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A B S T R A C T  

Let .,~" be the class of quasinilpotent groups. Let K be an J~'-injector of a group 
G. In this note we study the normality in G of the subgroup ZJ(K). Using this 
subgroup we obtain a "factorization of Thompson type" of G. 

Introduction. Notation 

In this note, all groups will be finite. ?¢" will denote the class of nilpotent 

groups. The concept of semisimple groups is taken from Gorenstein-Walter's 

paper ([7]). In particular, L(G) denotes the semisimple radical of the group G. 

A group G is N-constrained if C~(F(G)) <= F(G) ([10]), and it is equivalent to 

L(G) = 1 ([11]). Cc,(L(G))is the ,/V-constrained radical of the group G ([9]). 

For every Fitting class ~z of finite groups, Inj~(G) denotes the set of all 

o%-injectors of the group G, that is, the set of all H_<-G such that for each 
N ~ G ,  H f3 N is an ,~-maximal subgroup of N. 

The remainder of the notation is standard and it is taken mainly from ([6]). In 

particular, 7r(G) is the set of all primes which divide the order of the group G. 

[B, A, A ] denotes the triple commutator [[B, A ], A ] of two subgroups A, B of 

G. We define inductively [B,A;O]= B, and [B,A;i]= [[B,A;i-1],A], for 

i >0.  Lr,(G) denotes the ruth term of the lower central series of the group G, 

for m _-> I. Moreover, d(G) is the maximum of the orders of the Abelian 

subgroups of G. Let M(G) be the set of all Abelian subgroups of order d(G)  in 

G. Then, as in ([6]), J(G) is the subgroup of G generated by .d(G), that is, the 

Thompson subgroup of G. 

Glauberman ([6]), basing his work on some results and concepts of Thompson, 

obtained the following 
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THEOREM. Let G be a group with Op(G) /1  which is p-constrained and 
p-stable, p odd. If P is an Sp-subgroup of G, then 

G = Op,(G)Nc(ZJ(P)). 

In particular, i[ Op,(G)= 1, then ZJ(P)<~G. 

Using this subgroup, a Thompson factorization of the group 

G = No(J(P))Co(ZJ(P))= No(J(P))Cc(Z(P)) 

is obtained whenever G is a p-constrained and p-stable group with Op,(G) = 1, p 

odd. 
Later, Mann ([10]) proved the following 

THEOREM. Let G be an X-stable and N-constrained group, with IF(G)[ odd. 
Let S be an N-injector of G. Then ZJ(S)<1 G. 

Under the same assumptions as in the above Theorem he proved: 

G = N~ U(S))C~ (ZJ(S))  = N~ (J(S))Co (Z(S)) .  

Some related results were obtained by Arad in ([1]) and by Ezquerro in ([3]) 

by replacing the classes of p-groups and nilpotent groups by the class of 

7r-groups (Tr a set of primes), and by a saturated Fitting formation, respectively. 

Throughout these results we note that stability, constraint and existence of a 
unique conjugacy class of injectors are constant assumptions to obtain a 

factorization of Thompson type of a group. 
Let R be the class of quasinilpotent groups, i.e., R = 

(G/G = F(G)L(G)=  F*(G)). 
Blessenohl and Laue ([2]) proved that all groups have a unique conjugacy class 

of R-injectors, moreover, the R-injectors of a group G are the maximal 

R-subgroups of G containing F*(G) and if K is an R-injector of G, K = 

L(G)L where I is an X-injector of the N-constrained radical of G, Co(L(G)). 

On the other hand, it is well known that Cc(F*(G))<= F*(G)for every group 

G ([11]). 

DEFINITION 1. Let ff be a Fitting class. 
A group G is said to be ~-stable if whenever A is an ~-subgroup of G and B 

is an if-subgroup of N~(A) such that [A ,B ,B]= 1 then B =<(N~(A) mod 

Co(A ))~. 

The aim of this paper is mainly to prove the following results: 
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THEOREM A. Let G be an N-stable group, where 1 ~ F(G) is not a 2-group. 
Let K be an ?p-injector o[ G. Then 1 ~ 02,(ZJ(K))<1G. 

COROLLARY 1. Under the same assumptions as in Theorem A 

O = No (J(K))Ca (O,_.(ZJ(K))) = Sa (J(K))Ca (O,.,(Z(K))). 

COROLLARY 2. Let O be an N-stable group, with 1 # I F(G)I  odd. Let K be an 

?p-injector of O. Then 1 # ZJ(K)<~G. 

COROLLARY 3. Under the same assumptions as in Corollary 2 

G = No (J(K))Ca (ZJ(K)) = No (J(K))Ca (Z(K)). 

First, we give some preliminary results: 

LEMMA 1. Let A be a semisimple subgroup of a group G. Let B be a subgroup of 
No (A ). Suppose that there exists a positive integer n >= 1 such that [A, B ; n ] = 1. 

Then [A,B] = 1, i.e., B <= Co(A). 

PROOF. By induction on the order of A. Let n be the least positive integer 

such that [A,B;n]  = 1; we can assume n > 1. 

Using an inductive hypothesis and the three-subgroup lemma together with 

the perfectness of A, we can consider Z(A)-= 1. Then A is a direct product of 

nonabelian simple groups. 

Since [ A , B ; n -  1] is subnormal in A, [ A , B ; n -  1] is the direct product of 

certain components of A and A = [ A , B ; n - 1 ] × K ,  where K is a proper 

semisimple subgroup of A normalized by B. 

By the inductive hypothesis [K,B] = 1, and easily [A,B] = 1. 

LEMMA 2. If G is an N-stable group, then G is an ?p-stable group. 

PROOF. Let A and B be ?P-subgroups of G such that B normalizes A and 

[A ,B ,B]=  I. 
Using the X-stability of G we have F(B)<=F(No(F(A)) mod Co(F(A))). 

Then F(B)Ca (F(A ) ) ~ N o  (F(A )). 
Since [A, B, B] = 1, using the three-subgroup lemma together with the perfect- 

ness of L(B),  we have [A,L(B)] = 1, that is, L ( B ) ~  Co(A)<= Ca(F(A)). Thus 

BCo (F(A )) = F(B)Co (F(A ))~ ~ No (F(A )). 
On the other hand, since [A,B,B] = 1, by Lemma 1, B <= Ca(L(A)).  
Thus, BCa (F(A )) n Ca (L (A )) = B (Ca (F(A )) N Ca (L (A ))) = BCa (A ), and 

BCa(A ) ~ N o ( F ( A  ))A Ca(L(A ) )~Na(F(A ))N Na(L(A  ))= No(A).  That 

is, BCa(A ) ~ N a ( A  ). 
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Moreover, BCa (A)/C6 (A) is a group of automorphisms of A which stabilizes 
the series A ~ [A, B] ~ [A, B, B] = 1. 

Using ([8]), BCa(A)/Ca(A) is a nilpotent group. 

Thus, we obtain B <= F(Na(A ) mad Ca(A)) and trivially B <= F*(Na(A ) mad 

Ca(A)). 

LEMMA 3. Let G be an W-stable group. Let K be an fC'-injector of G. Then 
ZJ(K) <- F(G). 

PROOF. Using Lemma 2 and its proof on F*(G) and ZJ(K) we obtain 

ZJ(K)<= F(G mod Ca(F*(G))). 
Hence ZJ(K)Co(F*(G))~G. 
Since Ca(F*(G)) <= F*(G), Z J ( K ) ~ G .  Then, ZJ(K)<= F(G). 

PROOF OF THEOREM A. (This proof is based, in part, on Glauberman's proof 

of his ZJ-Theorem ([6, Th. 8, 2.10]).) 

We know that K = L(G)I, where I is an W-injector of the W-constrained 

radical of G, Ca(L(G)), and we easily get I = F(K). 
As a consequence of this, we easily obtain that the following are equivalent: 

(i) F(G)~ 1; (ii) F(K)/1; (iii) ZJ(K) /1 .  
Moreover, if ZJ(K) is a 2-group then F(G) is a 2-group. 

Note, too, that Or(ZJ(K)) normal in G implies Oz(ZJ(K)) characteristic in 

G. 
By Lemma 3, ZJ(K)<= F(G). Now, to obtain the Theorem it is enough to 

prove that if B is a normal, nilpotent subgroup of G, then Or(ZJ(K)) f3 B is 

normal in G. 
Assume that the result is false and suppose that G is a group of least order for 

which the result is false. Suppose that B is a normal, nilpotent subgroup of G of 

least order such that Or(ZJ(K))f3 B is not normal in G. 

Set Z = ZJ(K) and let Bt be the normal closure of 02,(Z)f3 B in G, then 
Or(Z) fq B, = Or(Z) A B. Hence, by our minimal choice of B, we must have 

B =B~. 

Furthermore, Or(Z)N B' is a normal subgroup of G because B ' <  B. 

Since Or(Z)~K, for any x in G we have 

[ (Oz(Z)  n By, B] = [Oz(Z)  n B,B]" _-< ( O r ( Z )  n B ' y  = O r ( Z )  n B'. 

Since B is generated by all such (O2,(Z)N B)', it follow~ that B ' =  
02.(Z) fq B'. Thus 

(1) B '  <- 
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In particular, O,,(Z)N B centralizes B'. Since B'~G, we have that B 

centralizes B', whence B' <= Z(B). Therefore 

(2) cl(B) -<_ 2. 

Let A E M ( K ) ;  we know that K = L(G)I, where I is an ?(-injector of 

Cc(L(G)). 
~" ~-  ~ L  ForeveryaEA,  wedefinea~ { f E I [ a f - ' E L ( G ) } . L e t F  Ua~aat= 

Now, since F(G) centralizes L(G) ,  for every positive integer m, [B,A ;m] =< 

[B, F; m ] <= Lm+~(l). Thus, it is clear that for some positive integer n, 

(3) [B,A;n] = 1. 

Since (1), (2), (3), B'~G and [A, B]' is of odd order, we are in the hypothesis of 

([1, 2.8]); then there exists an element A in M(K) such that B < No(A),  hence 

[B,A,A]=I.  
Since G is ?(-stable, A<-_F(G mod C ) = T ,  where C=CG(B)<= 

c~(o~_,(z) n B)). 
Hence, A E M(K n T) and, then, J(K N T)<= J(K). 
If T = G, then G/C is a nilpotent group, so KC is a subnormal subgroup of G. 

Now, KC < G by our choice of G and B and let M be a normal proper 

subgroup of G such that K =< M. 

By our minimal choice of G, we have O:.(Z)~M, and then 02.(Z) char M. 

Therefore, 02.(Z)~G, contrary to the fact that B O O,_,(Z) is not a normal 

subgroup of G. Therefore T<1G. 
Since J(KNT)<=J(K), then ZJ(K)<-ZJ(KNT)  and Oz(Z)NB<= 

Oz(Z) <-_ O:,(ZJ(K 91 T)). 
By the minimal choice of G, 02,(ZJ(K N T))~ T. Thus, we have 02.(ZJ(K n 

T))~G. Then B <= 02,(ZJ(K O T)). 
Therefore, we conclude that B is abelian. 

If J(g)  <= J(g  O T), then J(K) = J(K O T), so 02,(Z) = Oz(ZJ(g n T))~G,  

contrary to our choice of G. 

Thus, there exists an element At in ,if(K) such that A, ;~ T. Then, we must 

have [B,A.,A,] # 1. 
Among all such choices of At, choose A, so that IA, O B[ is maximal. 

If B normalizes A,, [B, Aj,A,] = 1, contrary to our choice of A~. Hence, by 

([1, 2.5]), there exists an element A* in M(K) such that A~ n B < A* n B and 

A* normalizes A~. 

Because of the maximal choice of A~, it follows that A*=< K O T. Hence 

ZJ(K n T) < A *. But B < 02,(ZJ(K n T)). Therefore, 
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[B,A, ,A,]  <= [O~.(ZJ(K N T)) ,A, ,A ,] <- [A *,A, ,A,] = 1 

and this is contrary to the fact that [B,A,,A,] • 1. 

PROOF OF COROLLARY 1. Let Z = ZJ(K), C = Co(02.(Z)). 
Since Oz(Z)<l G, also C ~  < G. Hence, by the Frattini Argument, G = 

CNc(K n C)= CNo(J(K n C)). But, since J(K)<= K N C, it follows that 

J (K)  = J (K  N C). 

Moreover, since Z(K)  < ZJ(K), we have C <-_ Co(02.(Z(K))). 

Therefore, we conclude that 

G = Co (O,_.(ZJ(K)))No (J(K)) = Co (02.(Z(K)))No (J(K)). 

PROOF OF COROLLARY 2. Because of Lemma 3, ZJ(K)<= F(G). Now, the 

result is a direct consequence of Theorem A. 

PROOF OF COROLLARY 3. It is obtained from Corollary 2 following an 

argument similar to that of Corollary 1. 

We know that in an N-constrained group the N-injectors are the B-injectors. 

So, Corollaries 2 and 3 are a generalization of Mann's Theorem for not 

necessarily N-constrained groups. 

REMARK 1. The converse of Lemma 2 is not true in general. It is enough to 

take G = SA(2,5) = [Csx C~] SL(2,5), which is B-stable but is not N-stable. 

Before proving the Remark we give the following results: 

LEMMA 4. Let of be a Fitting class. Let A be a group of automorphisms of an 
of-group G. I[ A stabilizes a series of G, then A is an of-group. 

PROOF. Because of ([8]), A is nilpotent, so it is enough to prove that Cp E of, 

for all primes p E ¢r(A). 

Using ([12]), if p ~ i r ( A ) ,  then p ~ ' ( [ G , A ] ) .  Moreover, [G,A] < 
F ( G ) ~ G  ~ of. Hence Cp is isomorphic to a subnormal subgroup of the of-group 

IG, A]. So Cp ~ of. 

LEMMA 5. Let of be a Fitting class. For a group G, the following are 

equivalent: 

(i) G is of-stable: 
(ii) if A is an of-subgroup of G, and x is a p-element of No (A ), for every prime 

p E c h a r ( o f ) = { p l C  pEof},  such that [ A , x , x [ = l ,  then x E ( N o ( A )  mod 

Co(A))~ ; 



Vol, 54, 1986 ,~¢'-STABLE GROUPS 57 

(iii) if A is an ~-subgroup of G, and x is an element of N,~(A ) such that 

[A,x,x] = 1, then x E (NG(A ) rood CC'(A ))~. 

PROOF. (i) ~ (ii). Let  A and x be as in (ii). Let B = (x). Since (x) E fro using 

(i), the conclusion follows easily. 

(ii):ff (iii). Let  A and x be as in (iii). 

Let  7r((x)) = {p~ . . . . .  p,}. Then  (x) = (x,) x . . .  x (x,) ,  where (x;) is a p,-group, 

for each i = 1 . . . . .  n. 

Obviously,  each x,, i=  l . . . . .  n, normalizes A and satisfies [A,(x~),(x~)] = 1. 

By L e m m a  4, (x , )Co(A) /Cc, (A)  is an i f -g roup ,  for each i = 1 . . . . .  n. 

If p~ is such that Cp, is not an 5Z-group, then x, E C6(A ). Otherwise,  using (ii), 

we have x~ E (No. (A)  mod Co. (A)):.~. So x E (N~ (A)  mod C~ (A))~. 

(iii) :ff (i). Let  A and B be as in Definit ion 1. For  every x E B, A and x satisfy 

the assumptions of (iii). Then  the conclusion is clear. 

PROOF OF REMARK 1. We see a sketch of the proof.  

Let G = S A ( 2 , 5 ) ~  [C5 x C~] SL(2,5). 

To  prove that G is not an X-s table  group it is enough to take the subgroup 

N = C~ x C5, which is ni lpotent  and satisfies CO.(N)= N. 

For every e lement  x of SL(2, 5) of order  5, we have x N ~  1 and [N, x, x ] = 1. 

If G were an X-s table  group,  it would follow that xN E F(NG(N)/CC.(N)) = 

F ( G / N )  ~ F(SL(2,5))  and hence that xN  E 0 5 ( G / N ) ~  O5(SL(2,5))= 1. 

Let us see that G is an 3?-stable group. 

First, we note that G cannot  have an 3?-subgroup of o rder  5 ~ .2  ~, a E{2,3} 

and /3 E{1,2,3},  5"23, 5 . 2 . 3  or 5" .3, a ~ {2,3}. 

If there exists an 3?-subgroup H of G of order  5 ~ . 2 " . 3 ,  a E{2,3} and 

/3 E{1,2,3},  or 5 .2  ~.3,  /3 E{2,3}, H is semisimple. In this case, if x E Nc,(H) 

and [H,x,x] = 1 we have, by Lemma  1, x E Co(H).  

If there exists an 3?-subgroup H of G of o rder  2, 5, 3, 5 .3 ,  5 .2 ,  2 .3  or 5 .2  "~, 

and x E N~(H)  with [H,x,x] = 1, then x ~ CG(H). 

If H is an 3?-subgroup of order  5 3 , 2 3 or 2 3. 3, and x E N a ( H )  is such that 

[H,x,x] = 1, then 

x ~ H mod CO.(H) g F*(NC.(H) mod C~(H)). 

Let H be a subgroup of o rder  5 2. 

If H = N, then F*(N~(H) /C6(H))  = Na(H) /Cc(H) .  Thus,  if x E No(H)  then 

x C F*(N~(H)  mod Co(H)). 

Assume that H #  N. 
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If x is a p-element, p ~ 5 ,  such that x E No(H)  and [H,x,x]= 1, then 

x E C~(H). 
If x is a 5-element, x ~ N~(H)  and x ~ H  then ( H , x ) =  Ps, where P5 is an 

Ss-subgroup of G. 
But PsmN~(H), and this case is concluded. 
If H is an B-subgroup of order 22 or 22.3 and x E N a ( H )  is such that 

[H, x, x ] = 1, then x E C~ (H), unless perhaps x has order 4 and/-/2 ~ (x), where 

/-/2 is an S2-subgroup of H. 

In this case (H2,x) = P2 is an S2-subgroup of G, and x E P:~NG(H). 

REMARK 2. In general, it is not possible to obtain Theorem A and its 

Corollaries under the weaker assumption of ~C-stability. The group in Remark 1 

is an example of this. 

PROOF. By Remark 1, G =SA(2 ,5 )~ [C5×  (?5] SL(2,5) is B-stable but not 

W-stable. 
Let N = C5 x C~. Since F ( G ) =  N and C~(N) = N, G is an W-constrained 

group. Hence its B-injectors are its W-injectors, and they are its Ss-subgroups. 

If K is an ~'-injector of G, d(K)  = 25 and 1 ~ Z ( K )  = Z J ( K )  is subnormal 

but not normal in G. 

Recently, Ffrster ([4]) has obtained the following theorem: 

(1. a ) For every group G and every T / Z ( L  (G)) E Syl2(L ( G ) / Z ( L  (G))), then 

O ~ Inj~(N~(T)) C Inj~(G). 

Using this result we obtain another generalization of Mann's Theorem for not 

necessarily W-constrained groups. 

COROLLARY 4. Let G be an W-stable group where 1 ~ F(G)  is not a 2-group. 

Let N be an W-injector as in (1 .or). Then 

G = L ( G ) S o  (J(N))Co (O:,(ZJ(N))) = L (G)No (J(S))Co (O,~.(Z(N))). 

PROOF. By the Frattini argument, G = L(G)No(T) .  Note that F(G)  <- _ 

No(T).  
The result is a direct consequence of Theorem A. 
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