A CHARACTERISTIC SUBGROUP OF N-STABLE GROUPS

BY

M. DOLORES PEREZ-RAMOS *Departamento de Algebra y Fundamentos, Facultad de Ciencias Matemáticas, C~ Doctor Moliner s/n Bur]asot, Valencia. Spain*

ABSTRACT

Let \tilde{N} be the class of quasinilpotent groups. Let K be an \tilde{N} -injector of a group G. In this note we study the normality in G of the subgroup $ZJ(K)$. Using this subgroup we obtain a "factorization of Thompson type" of G .

Introduction. Notation

In this note, all groups will be finite. N will denote the class of nilpotent groups. The concept of semisimple groups is taken from Gorenstein-Walter's paper ([7]). In particular, $L(G)$ denotes the semisimple radical of the group G.

A group G is N-constrained if $C_G(F(G)) \leq F(G)$ ([10]), and it is equivalent to $L(G) = 1$ ([11]). $C_G(L(G))$ is the N-constrained radical of the group G ([9]).

For every Fitting class $\mathcal F$ of finite groups, $Inj_{\mathcal F}(G)$ denotes the set of all \mathscr{F} -injectors of the group *G*, that is, the set of all $H \le G$ such that for each $N \triangleleft \triangleleft G$, $H \cap N$ is an \mathscr{F} -maximal subgroup of N.

The remainder of the notation is standard and it is taken mainly from ([6]). In particular, $\pi(G)$ is the set of all primes which divide the order of the group G. $[B, A, A]$ denotes the triple commutator $[[B, A], A]$ of two subgroups A, B of G. We define inductively $[B, A; 0] = B$, and $[B, A; i] = [[B, A; i-1], A]$, for $i > 0$. $L_m(G)$ denotes the *m*th term of the lower central series of the group G, for $m \ge 1$. Moreover, $d(G)$ is the maximum of the orders of the Abelian subgroups of G. Let $\mathcal{A}(G)$ be the set of all Abelian subgroups of order $d(G)$ in G. Then, as in ([6]), $J(G)$ is the subgroup of G generated by $\mathcal{A}(G)$, that is, the Thompson subgroup of G.

Glauberman ([6]), basing his work on some results and concepts of Thompson, obtained the following

Received July 17, 1985 and in revised form September 26, 1985

THEOREM. Let G be a group with $O_p(G) \neq 1$ which is p-constrained and *p-stable, p odd. If P is an Sp-subgroup of G, then*

$$
G = O_{p'}(G)N_G(ZJ(P)).
$$

In particular, if $O_p(G) = 1$ *, then ZJ(P)<1iG.*

Using this subgroup, a Thompson factorization of the group

$$
G = N_G(J(P))C_G(ZJ(P)) = N_G(J(P))C_G(Z(P))
$$

is obtained whenever G is a p-constrained and p-stable group with $O_p(G) = 1$, p odd.

Later, Mann ([10]) proved the following

THEOREM. Let G be an N-stable and N-constrained group, with $|F(G)|$ odd. *Let S be an N-injector of G. Then* $ZJ(S) \triangleleft G$ *.*

Under the same assumptions as in the above Theorem he proved:

$$
G = N_G(J(S))C_G(ZJ(S)) = N_G(J(S))C_G(Z(S)).
$$

Some related results were obtained by Arad in ([1]) and by Ezquerro in ([3]) by replacing the classes of p-groups and nilpotent groups by the class of π -groups (π a set of primes), and by a saturated Fitting formation, respectively.

Throughout these results we note that stability, constraint and existence of a unique conjugacy class of injectors are constant assumptions to obtain a factorization of Thompson type of a group.

Let $\tilde{\mathcal{N}}$ be the class of quasinilpotent groups, i.e., $\tilde{\mathcal{N}} =$ $(G/G = F(G)L(G) = F^*(G)).$

Blessenohl and Laue ([2]) proved that all groups have a unique conjugacy class of $\tilde{\mathcal{N}}$ -injectors, moreover, the $\tilde{\mathcal{N}}$ -injectors of a group G are the maximal $\tilde{\mathcal{N}}$ -subgroups of G containing $F^*(G)$ and if K is an $\tilde{\mathcal{N}}$ -injector of G, K = $L(G)$ *l*, where *I* is an N -injector of the N -constrained radical of G , $C_G(L(G))$.

On the other hand, it is well known that $C_G(F^*(G)) \leq F^*(G)$ for every group G ([11]).

DEFINITION 1. Let $\mathcal F$ be a Fitting class.

A group G is said to be $\mathcal F$ -stable if whenever A is an $\mathcal F$ -subgroup of G and B is an $\mathcal{F}\text{-subgroup of } N_G(A)$ such that $[A, B, B] = 1$ then $B \leq (N_G(A) \text{ mod } A)$ $C_G(A)$) \overline{x} .

The aim of this paper is mainly to prove the following results:

THEOREM A. Let G be an N-stable group, where $1 \neq F(G)$ is not a 2-group. *Let K be an* \tilde{N} *-injector of G. Then* $1 \neq O_2(ZJ(K)) \triangleleft G$.

COROLLARY 1. *Under the same assumptions as in Theorem A*

$$
G = N_G(J(K))C_G(O_{2}(ZJ(K))) = N_G(J(K))C_G(O_{2}(Z(K))).
$$

COROLLARY 2. Let G be an N-stable group, with $1 \neq |F(G)|$ *odd. Let K be an* $\tilde{\mathcal{N}}$ -injector of G. Then $1 \neq ZJ(K) \triangleleft G$.

COROLLARY 3. *Under the same assumptions as in Corollary 2*

$$
G = N_G(J(K))C_G(ZJ(K)) = N_G(J(K))C_G(Z(K)).
$$

First, we give some preliminary results:

LEMMA 1. *Let A be a semisimple subgroup of a group G. Let B be a subgroup of* $N_G(A)$ *. Suppose that there exists a positive integer n* ≥ 1 *such that* $[A, B; n] = 1$ *. Then* $[A, B] = 1$, *i.e.*, $B \leq C_G(A)$.

PROOF. By induction on the order of A . Let n be the least positive integer such that $[A, B; n] = 1$; we can assume $n > 1$.

Using an inductive hypothesis and the three-subgroup lemma together with the perfectness of A, we can consider $Z(A) = 1$. Then A is a direct product of nonabelian simple groups.

Since $[A, B; n-1]$ is subnormal in A, $[A, B; n-1]$ is the direct product of certain components of A and $A = [A, B; n-1] \times K$, where K is a proper semisimple subgroup of A normalized by B.

By the inductive hypothesis $[K, B] = 1$, and easily $[A, B] = 1$.

LEMMA 2. If G is an N -stable group, then G is an \tilde{N} -stable group.

PROOF. Let A and B be $\tilde{\mathcal{N}}$ -subgroups of G such that B normalizes A and $[A, B, B] = 1.$

Using the *N*-stability of G we have $F(B) \leq F(N_G(F(A)))$ mod $C_G(F(A)))$. Then $F(B)C_G(F(A)) \triangleleft \triangleleft N_G(F(A))$.

Since $[A, B, B] = 1$, using the three-subgroup lemma together with the perfectness of $L(B)$, we have $[A, L(B)] = 1$, that is, $L(B) \le C_G(A) \le C_G(F(A))$. Thus $BC_G(F(A)) = F(B)C_G(F(A)) \leq N_G(F(A)).$

On the other hand, since $[A, B, B] = 1$, by Lemma 1, $B \leq C_G(L(A))$.

Thus, $BC_G(F(A)) \cap C_G(L(A)) = B(C_G(F(A)) \cap C_G(L(A))) = BC_G(A)$, and $BC_G(A) \triangleleft \triangleleft N_G(F(A)) \cap C_G(L(A)) \triangleleft N_G(F(A)) \cap N_G(L(A)) = N_G(A)$. That is, $BC_G(A) \triangleleft \triangleleft N_G(A)$.

Moreover, $BC_G(A)/C_G(A)$ is a group of automorphisms of A which stabilizes the series $A \geq [A, B] \geq [A, B, B] = 1$.

Using ([8]), $BC_G(A)/C_G(A)$ is a nilpotent group.

Thus, we obtain $B \leq F(N_G(A) \mod C_G(A))$ and trivially $B \leq F^*(N_G(A) \mod I_G)$ $C_G(A)$).

LEMMA 3. Let G be an N-stable group. Let K be an \tilde{N} -injector of G. Then $ZJ(K) \leq F(G)$.

PROOF. Using Lemma 2 and its proof on $F^*(G)$ and $ZJ(K)$ we obtain $ZJ(K) \leq F(G \mod C_G(F^*(G))).$

Hence $ZJ(K)C_G(F^*(G))\leq\mathcal{G}.$

Since $C_G(F^*(G)) \leq F^*(G)$, $ZJ(K) \leq G$. Then, $ZJ(K) \leq F(G)$.

PROOF OF THEOREM A. (This proof is based, in part, on Glauberman's proof of his ZJ-Theorem ([6, Th. 8, 2.10]).)

We know that $K = L(G)I$, where I is an N-injector of the N-constrained radical of *G*, $C_G(L(G))$, and we easily get $I = F(K)$.

As a consequence of this, we easily obtain that the following are equivalent: (i) $F(G) \neq 1$; (ii) $F(K) \neq 1$; (iii) $ZJ(K) \neq 1$.

Moreover, if $ZJ(K)$ is a 2-group then $F(G)$ is a 2-group.

Note, too, that $O_2(ZJ(K))$ normal in G implies $O_2(ZJ(K))$ characteristic in G.

By Lemma 3, $ZJ(K) \leq F(G)$. Now, to obtain the Theorem it is enough to prove that if B is a normal, nilpotent subgroup of G, then $O_2(ZJ(K)) \cap B$ is normal in **G.**

Assume that the result is false and suppose that G is a group of least order for which the result is false. Suppose that B is a normal, nilpotent subgroup of G of least order such that $O_2(ZJ(K)) \cap B$ is not normal in G.

Set $Z = ZJ(K)$ and let B_1 be the normal closure of $O_2(Z) \cap B$ in G, then $O_2(Z) \cap B_1 = O_2(Z) \cap B$. Hence, by our minimal choice of B, we must have $B = B_{1}$.

Furthermore, $O_2(Z) \cap B'$ is a normal subgroup of G because $B' < B$. Since $O_2(Z) \leq K$, for any x in G we have

$$
[(O_{2}(Z)\cap B)^{x},B] = [O_{2}(Z)\cap B,B]^{x} \leq (O_{2}(Z)\cap B')^{x} = O_{2}(Z)\cap B'.
$$

Since B is generated by all such $(O_2(Z) \cap B)^x$, it follows that $B' \leq$ $O₂(Z) \cap B'$. Thus

$$
(1) \t\t B' \leq O_2(Z).
$$

In particular, $O_y(Z) \cap B$ centralizes B'. Since $B' \trianglelefteq G$, we have that B centralizes B' , whence $B' \leq Z(B)$. Therefore

$$
cl(B) \leq 2.
$$

Let $A \in \mathcal{A}(K)$; we know that $K = L(G)I$, where I is an N-injector of $C_G(L(G))$.

For every $a \in A$, we define $a_i = \{f \in I \mid af^{-1} \in L(G)\}$. Let $F = \bigcup_{a \in A} a_i \leq I$.

Now, since $F(G)$ centralizes $L(G)$, for every positive integer m, $[B, A; m] \leq$ $[B, F; m] \leq L_{m+1}(I)$. Thus, it is clear that for some positive integer *n*,

(3)
$$
[B, A; n] = 1.
$$

Since (1), (2), (3), $B \triangleleft G$ and $[A, B]'$ is of odd order, we are in the hypothesis of ([1, 2.8]); then there exists an element A in $\mathcal{A}(K)$ such that $B \le N_G(A)$, hence $[B, A, A] = 1.$

Since G is N-stable, $A \leq F(G \mod C) = T$, where $C = C_G(B) \leq T$ $C_G(O_{2}(Z) \cap B)$).

Hence, $A \in \mathcal{A}(K \cap T)$ and, then, $J(K \cap T) \leq J(K)$.

If $T = G$, then G/C is a nilpotent group, so KC is a subnormal subgroup of G. Now, $KC < G$ by our choice of G and B and let M be a normal proper subgroup of G such that $K \le M$.

By our minimal choice of G, we have $O₂(Z) \triangleleft M$, and then $O₂(Z)$ char M. Therefore, $O_2(Z) \trianglelefteq G$, contrary to the fact that $B \cap O_2(Z)$ is not a normal subgroup of G. Therefore $T \triangleleft G$.

Since $J(K \cap T) \leq J(K)$, then $ZJ(K) \leq ZJ(K \cap T)$ and $O_{Z}(Z) \cap B \leq$ $O_2(Z) \leq O_2(ZJ(K \cap T)).$

By the minimal choice of *G*, $O_2(ZJ(K \cap T)) \le T$. Thus, we have $O_2(ZJ(K \cap T))$ *T*)) $\triangleleft G$. Then $B \leq O_2(ZJ(K \cap T))$.

Therefore, we conclude that B is abelian.

If $J(K) \leq J(K \cap T)$, then $J(K) = J(K \cap T)$, so $O_2(Z) = O_2(ZJ(K \cap T)) \trianglelefteq G$, contrary to our choice of G.

Thus, there exists an element A_1 in $\mathcal{A}(K)$ such that $A_1 \not\leq T$. Then, we must have $[B, A_1, A_1] \neq 1$.

Among all such choices of A_1 , choose A_1 so that $|A_1 \cap B|$ is maximal.

If B normalizes A_1 , $[B, A_1, A_1] = 1$, contrary to our choice of A_1 . Hence, by ([1, 2.5]), there exists an element A^* in $\mathcal{A}(K)$ such that $A_1 \cap B \leq A^* \cap B$ and A^* normalizes A_1 .

Because of the maximal choice of A_1 , it follows that $A^* \leq K \cap T$. Hence $ZJ(K \cap T) \leq A^*$. But $B \leq O_2(ZJ(K \cap T))$. Therefore,

$$
[B, A_1, A_1] \leq [O_2(ZJ(K \cap T)), A_1, A_1] \leq [A^*, A_1, A_1] = 1
$$

and this is contrary to the fact that $[B, A_1, A_1] \neq 1$.

PROOF OF COROLLARY 1. Let $Z = ZJ(K)$, $C = C_G(O_2(Z))$.

Since $O_{\chi}(Z) \triangleleft G$, also $C \le G$. Hence, by the Frattini Argument, $G =$ $CN_G(K \cap C) = CN_G(J(K \cap C))$. But, since $J(K) \leq K \cap C$, it follows that $J(K) = J(K \cap C)$.

Moreover, since $Z(K) \leq ZJ(K)$, we have $C \leq C_G(O_2(Z(K)))$. Therefore, we conclude that

$$
G = C_G(O_{2}(ZJ(K)))N_G(J(K)) = C_G(O_{2}(Z(K)))N_G(J(K)).
$$

PROOF OF COROLLARY 2. Because of Lemma 3, $ZJ(K) \leq F(G)$. Now, the result is a direct consequence of Theorem A.

PROOF OF COROLLARY 3. It is obtained from Corollary 2 following an argument similar to that of Corollary 1.

We know that in an N-constrained group the N-injectors are the \tilde{N} -injectors. So, Corollaries 2 and 3 are a generalization of Mann's Theorem for not necessarily N -constrained groups.

REMARK 1. The converse of Lemma 2 is not true in general. It is enough to take $G = SA(2, 5) \cong [C_5 \times C_5] SL(2, 5)$, which is \tilde{N} -stable but is not N-stable.

Before proving the Remark we give the following results:

LEMMA 4. Let $\mathcal F$ be a Fitting class. Let A be a group of automorphisms of an $\mathscr{F}\text{-}group G.$ If A stabilizes a series of G, then A is an $\mathscr{F}\text{-}group.$

PROOF. Because of ([8]), A is nilpotent, so it is enough to prove that $C_p \in \mathcal{F}$, for all primes $p \in \pi(A)$.

Using ([12]), if $p \in \pi(A)$, then $p \in \pi([G,A])$. Moreover, $[G,A] \le$ $F(G) \triangleleft G \in \mathcal{F}$. Hence C_p is isomorphic to a subnormal subgroup of the \mathcal{F} -group $[G, A]$. So $C_p \in \mathcal{F}$.

LEMMA 5. Let $\mathcal F$ be a Fitting class. For a group G, the following are *equivalent:*

(i) G is \mathscr{F} -stable:

(ii) if A is an \mathcal{F} -subgroup of G, and x is a p-element of $N_G(A)$, for every prime $p \in \text{char}(\mathcal{F}) = \{p \mid C_p \in \mathcal{F}\}, \text{ such that } [A, x, x] = 1, \text{ then } x \in (N_G(A) \text{ mod } 1)$ $C_G(A))_{\mathscr{F}};$

(iii) *if* A is an \mathcal{F} -subgroup of G, and x is an element of $N_G(A)$ such that $[A, x, x] = 1$, then $x \in (N_G(A) \text{ mod } C_G(A))_{\bar{x}}$.

PROOF. (i) \Rightarrow (ii). Let A and x be as in (ii). Let $B = \langle x \rangle$. Since $\langle x \rangle \in \mathcal{F}$, using (i), the conclusion follows easily.

 $(ii) \Rightarrow (iii)$. Let A and x be as in (iii).

Let $\pi(\langle x \rangle) = \{p_1, ..., p_n\}$. Then $\langle x \rangle = \langle x_1 \rangle \times \cdots \times \langle x_n \rangle$, where $\langle x_i \rangle$ is a p_i -group, for each $i = 1, \ldots, n$.

Obviously, each x_i , $i = 1, ..., n$, normalizes A and satisfies $[A, (x_i), (x_i)] = 1$. By Lemma 4, $\langle x_i \rangle C_G(A)/C_G(A)$ is an \mathscr{F} -group, for each $i = 1, ..., n$.

If p_i is such that C_p , is not an $\mathscr{F}\text{-group}$, then $x_i \in C_G(A)$. Otherwise, using (ii), we have $x_i \in (N_G(A) \text{ mod } C_G(A))$:. So $x \in (N_G(A) \text{ mod } C_G(A))$.

(iii) \Rightarrow (i). Let A and B be as in Definition 1. For every $x \in B$, A and x satisfy the assumptions of (iii). Then the conclusion is clear.

PROOF OF REMARK 1. We see a sketch of the proof.

Let $G = SA(2,5) \cong [C_5 \times C_5] SL(2,5)$.

To prove that G is not an N -stable group it is enough to take the subgroup $N = C_5 \times C_5$, which is nilpotent and satisfies $C_G(N) = N$.

For every element x of SL(2,5) of order 5, we have $xN \neq 1$ and $[N, x, x] = 1$.

If G were an N-stable group, it would follow that $xN \in F(N_G(N)/C_G(N)) =$ $F(G/N) \cong F(SL(2,5))$ and hence that $xN \in O₅(G/N) \cong O₅(SL(2,5))=1$.

Let us see that G is an $\tilde{\mathcal{N}}$ -stable group.

First, we note that G cannot have an $\tilde{\mathcal{N}}$ -subgroup of order $5^{\alpha} \cdot 2^{\beta}$, $\alpha \in \{2,3\}$ and $\beta \in \{1,2,3\}, 5 \cdot 2^3, 5 \cdot 2 \cdot 3$ or $5^{\alpha} \cdot 3, \alpha \in \{2,3\}.$

If there exists an \hat{N} -subgroup H of G of order $5^{\alpha} \cdot 2^{\beta} \cdot 3$, $\alpha \in \{2,3\}$ and $\beta \in \{1,2,3\}$, or $5 \cdot 2^{\beta} \cdot 3$, $\beta \in \{2,3\}$, *H* is semisimple. In this case, if $x \in N_G(H)$ and $[H, x, x] = 1$ we have, by Lemma 1, $x \in C_G(H)$.

If there exists an $\tilde{\mathcal{N}}$ -subgroup H of G of order 2, 5, 3, 5.3, 5.2, 2.3 or 5.2², and $x \in N_G(H)$ with $[H, x, x] = 1$, then $x \in C_G(H)$.

If H is an $\tilde{\mathcal{N}}$ -subgroup of order 5^3 , 2^3 or $2^3 \cdot 3$, and $x \in N_G(H)$ is such that $[H, x, x] = 1$, then

$$
x \in H \bmod C_G(H) \leq F^*(N_G(H) \bmod C_G(H)).
$$

Let H be a subgroup of order 5^2 .

If $H = N$, then $F^*(N_G(H)/C_G(H)) = N_G(H)/C_G(H)$. Thus, if $x \in N_G(H)$ then $x \in F^*(N_G(H) \text{ mod } C_G(H)).$

Assume that $H \neq N$.

If x is a p-element, $p \neq 5$, such that $x \in N_G(H)$ and $[H, x, x] = 1$, then $x \in C_G(H)$.

If x is a 5-element, $x \in N_G(H)$ and $x \notin H$ then $\langle H, x \rangle = P_5$, where P_5 is an S_5 -subgroup of G .

But $P_5 \trianglelefteq N_G(H)$, and this case is concluded.

If H is an $\tilde{\mathcal{N}}$ -subgroup of order 2^2 or $2^2 \cdot 3$ and $x \in N_G(H)$ is such that $[H, x, x] = 1$, then $x \in C_G(H)$, unless perhaps x has order 4 and $H_2 \neq \langle x \rangle$, where H_2 is an S₂-subgroup of H.

In this case $\langle H_2, x \rangle = P_2$ is an S₂-subgroup of G, and $x \in P_2 \le N_G(H)$.

REMARK 2. In general, it is not possible to obtain Theorem A and its Corollaries under the weaker assumption of \tilde{N} -stability. The group in Remark 1 is an example of this.

PROOF. By Remark 1, $G = SA(2,5) \cong [C_5 \times C_5] SL(2,5)$ is $\tilde{\mathcal{N}}$ -stable but not N -stable.

Let $N = C_5 \times C_5$. Since $F(G) = N$ and $C_G(N) = N$, G is an N-constrained group. Hence its $\tilde{\mathcal{N}}$ -injectors are its \mathcal{N} -injectors, and they are its $S_{\mathcal{S}}$ -subgroups.

If K is an $\tilde{\mathcal{N}}$ -injector of G, $d(K) = 25$ and $1 \neq Z(K) = ZJ(K)$ is subnormal but not normal in G.

Recently, Förster $([4])$ has obtained the following theorem: $(1 \cdot \alpha)$ For every group G and every $T/Z(L(G)) \in \text{Syl}_2(L(G)/Z(L(G)))$, then

 $\varnothing \neq \text{Inj}_{\mathcal{N}}(N_G(T)) \subset \text{Inj}_{\mathcal{N}}(G)$.

Using this result we obtain another generalization of Mann's Theorem for not necessarily W-constrained groups.

COROLLARY 4. Let G be an N-stable group where $1 \neq F(G)$ is not a 2-group. *Let* N be an N-injector as in $(1 \cdot \alpha)$. Then

$$
G = L(G)N_G(J(N))C_G(O_2(ZJ(N))) = L(G)N_G(J(N))C_G(O_2(Z(N))).
$$

PROOF. By the Frattini argument, $G = L(G)N_G(T)$. Note that $F(G) \leq$ $N_G(T)$.

The result is a direct consequence of Theorem A.

ACKNOWLEDGMENTS

This note is part of the author's doctoral thesis at the University of Valencia (Spain). The author wishes to express her gratitude to her supervisor Professor Vol. 54, 1986 $N-STABLE GROUPS$ 59

P6rez Monasor and also to Professor Iranzo for their devoted guidance and encouragement. The author was supported by a scholarship from the "Ministerio de Educación y Ciencia".

REFERENCES

1. Z. Arad, *A characteristic subgroup o[Tr-stable groups,* Canad. J. Math. 26 (1974), 1509-1514.

2. D. Blessenohl and H. Laue, *Fittingklassen endlicher Gruppen, in denen gewise Haup[acktoren ein[ach sind,* J. AIg. 56 (1979), 516-532.

3. L. M. Ezquerro, *~-estabilidad, Constricci6n y Factorizaci6n de grupos finitos,* Tesis Doctoral, Valencia, 1983.

4. P. Förster, preprint.

5. G. Glauberman, *A characteristic subgroup of a p-stable group,* Canad. J. Math. 20 (1968), **¹**I01-1135.

6. D. Gorenstein, *Finite Groups,* Harper & Row, New York, 1968.

7. D. Gorenstein and J. Walter, *The zr-layer of a finite group,* Ill. J. Math. 15 (1971), 555-564,

8. P. Hall, *Some sufficient conditions for a group to be nilpotent,* I11. J. Math. 2 (1958), 787-801.

9. M. J. Iranzo and F. Pérez Monasor, *Existence of N-injectors in a not central normal Fitting class,* Isr. J. Math. 48 (1984), 123-128.

10. A. Mann, *Injectors and normal subgroups of finite groups*, Isr. J. Math. 9 (1971), 554–558.

11. F. P6rez Monasor, *Grupos finitos separados respecto de una Formaci6n de Fitting,* Rev. Acad. Ciencias de Zaragoza, serie 2", XXVIII (3) (1973).

12. P. Schmid, *Uber die Stabilitiitsgruppen der Untergruppenreihen einer endlicher Gruppe,* Math. Z. 123 (1971), 318-324.